tags: - colorclass/a thermodynamic theory of statistical learning ---# A Thermodynamic Framework for Understanding SGD Dynamics

1. Setup and Notation

1.1 Basic Variables

Statistical/MathematicalPhysics/EinsteinDescription
θ ∈ ℝᵈxᵢNetwork parameters
L(θ)V(x)Loss landscape (potential)
ημLearning rate (mobility)
DDDiffusion constant
β = 1/Tβ = 1/kᵦTInverse temperature
ttTime
p(θ,t)ρ(x,t)Parameter distribution

1.2 SGD Dynamics

Statistical Form:

dθ = -η∇L(θ)dt + √(2D)dW

Einstein Notation:

dxᵢ = -μ∂ᵢV(x)dt + √(2D)dWᵢ

Where dW is a Wiener process representing batch noise.

2. Entropy Decomposition

2.1 System Entropy

The system entropy represents the information content of the parameter distribution:

Statistical:

s(t) = -ln p(θ(t),t)

Einstein:

s(t) = -ln ρ(x(t),t)

Information Theory Interpretation: - This is the pointwise surprisal of the current parameter configuration - Measures how “unlikely” the current state is under the evolving distribution - Units are nats when using natural logarithm

2.2 Medium Entropy

The medium entropy represents the computational work done through parameter updates:

Statistical:

sm(t) = (1/T)∫₀ᵗ ∇L(θ)·dθ

Einstein:

sm(t) = (1/T)∫₀ᵗ ∂ᵢV(x)dxᵢ

Information Theory Interpretation: - Represents information extracted from training data - Each gradient step transfers information from data to parameters - T scales the information content of each update

3. Fokker-Planck Evolution

The parameter distribution evolves according to:

Statistical:

∂ₜp(θ,t) = ∇·[η∇L(θ)p(θ,t) + D∇p(θ,t)]

Einstein:

∂ₜρ(x,t) = ∂ᵢ[μ∂ᵢV(x)ρ(x,t) + D∂ᵢρ(x,t)]

Information Theory Interpretation: - First term: directed information flow from loss landscape - Second term: diffusive information spreading from batch noise - Balance determines exploration vs exploitation

4. Entropy Production Rate

4.1 Total Rate

Statistical:

s˙tot(t) = -∂ₜln p(θ,t) + (1/T)∇L(θ)·θ̇

Einstein:

s˙tot(t) = -∂ₜln ρ(x,t) + (1/T)∂ᵢV(x)ẋᵢ

4.2 Steady State Analysis

At loss convergence: 1. Loss stops changing: ∂ₜL(θ) ≈ 0 2. But parameters continue diffusing: θ̇ ≠ 0 3. Distribution keeps evolving: ∂ₜp(θ,t) ≠ 0

This gives steady-state entropy production:

Statistical:

⟨s˙tot⟩ = ∫ j(θ)²/[Dp(θ)]dθ > 0

Einstein:

⟨s˙tot⟩ = ∫ jᵢ(x)²/[Dρ(x)]dx > 0

Where j is the probability current in parameter space.

5. Distance Growth Prediction

The distance from initialization R(t) = ||θ(t) - θ(0)|| grows as:

R(t) ∝ exp(⟨s˙tot⟩t/d)

Where d is the parameter dimension. This predicts log-linear growth because: 1. Steady state entropy production rate ⟨s˙tot⟩ is constant 2. Taking log of both sides: ln R(t) ∝ t 3. This matches empirical observations

Information Theory Interpretation: - Distance growth measures accumulated information from data - Continues even after loss converges due to neutral directions - Rate determined by balance of gradient and noise strength

6. Fluctuation Theorem

The system obeys Seifert’s integral fluctuation theorem:

⟨exp(-Δstot)⟩ = 1

This implies: 1. Some trajectories can temporarily decrease entropy 2. But entropy-decreasing trajectories are exponentially suppressed 3. Average behavior still produces entropy 4. Sets fundamental bounds on training efficiency

Information Theory Interpretation: - Places limits on how efficiently we can extract information from data - Quantifies unavoidable computational costs of learning - Similar to Landauer’s principle relating computation and entropy