tags: - colorclass/a thermodynamic theory of statistical learning ---# Power vs Information Processing Dominance Analysis
1. Basic Relations
1.1 Power Limit
B_power = P_max/(ν₀ * tr(I_F(θ)))
1.2 Information Limit
B_info = √(P_max * T₀)/(k_B * ν₀ * tr(I_F(θ)))
2. Crossover Analysis
2.1 Dominance Condition
B_power > B_info when:
P_max/(ν₀ * tr(I_F(θ))) > √(P_max * T₀)/(k_B * ν₀ * tr(I_F(θ)))
2.2 Simplification
Rearranging:
P_max > T₀/(k_B)²
Define critical power:
P_crit = T₀/(k_B)²
3. Regime Analysis
3.1 Power-Limited Regime (P_max < P_crit)
When:
P_max < T₀/(k_B)²
Then:
B_crit = B_power = P_max/(ν₀ * tr(I_F(θ)))
3.2 Information-Limited Regime (P_max > P_crit)
When:
P_max > T₀/(k_B)²
Then:
B_crit = B_info = √(P_max * T₀)/(k_B * ν₀ * tr(I_F(θ)))
4. Physical Interpretation
4.1 Small Power Regime
When P_max < P_crit: - Raw compute is limiting - Information processing capacity exceeds available power - Linear scaling with power
4.2 Large Power Regime
When P_max > P_crit: - Information processing is limiting - Excess compute power available - Square root scaling with power
5. Practical Implications
5.1 Small Models/Hardware
If P_max << T₀/(k_B)²:
B_crit ∝ P_max
Focus on hardware efficiency
5.2 Large Models/Hardware
If P_max >> T₀/(k_B)²:
B_crit ∝ √P_max
Focus on algorithmic efficiency
6. Observable Differences
6.1 Power-Limited Signs
- Linear scaling with compute - High hardware utilization - Temperature-independent behavior
6.2 Information-Limited Signs
- Square root scaling with compute - Hardware underutilization - Strong temperature dependence
7. Critical Points
7.1 Power-Information Transition
Occurs at:
P_max = T₀/(k_B)²
B_transition = T₀/(k_B²ν₀ * tr(I_F(θ)))
7.2 Scaling Transitions
Efficiency ∝ {
P_max if P_max < P_crit
√P_max if P_max > P_crit
}