tags: - colorclass/a thermodynamic theory of statistical learning ---# Error Bounds and Convergence Rates for SGD: A Thermodynamic Analysis

1. Setup and Assumptions

1.1 Basic Dynamics

dθ = -η∇L(θ)dt + √(2ηT)dW

1.2 Key Assumptions

1. L(θ) is μ-strongly convex:

L(θ₂) ≥ L(θ₁) + ∇L(θ₁)ᵀ(θ₂-θ₁) + (μ/2)||θ₂-θ₁||²

2. L(θ) has L-Lipschitz gradients:

||∇L(θ₂) - ∇L(θ₁)|| ≤ L||θ₂-θ₁||

3. Gradient noise has bounded variance:

𝔼[||∇L_B(θ) - ∇L(θ)||²] ≤ σ²

2. Fundamental Bounds

2.1 Free Energy Bound

Define free energy:

F(θ) = L(θ) - T·s(θ)

where s(θ) is local entropy.

Free energy decreases in expectation:

d𝔼[F(θ)] ≤ -η(μL/L+μ)𝔼[F(θ) - F*] + ηTd/2

2.2 Entropy Production Bound

From fluctuation theorem:

𝔼[exp(-Δstot)] = 1

implies:

𝔼[Δstot] ≥ 0

3. Convergence Rates

3.1 Short-Time Regime

For t << τrelax = 1/(ημ):

𝔼[L(θ(t)) - L*] ≤ (L₀ - L*)exp(-ημt) + ηTd/2μ

3.2 Long-Time Regime

For t >> τrelax:

𝔼[L(θ(t)) - L*] ≤ ηTd/2μ + (σ²η/4μ)

3.3 Optimal Learning Rate

Minimizing long-time bound:

η_opt = √(2μ/σ²)

giving error bound:

𝔼[L(θ) - L*] ≤ σ√(T/2μ)

4. Error Probability Bounds

4.1 Concentration Inequality

From large deviation theory:

P(L(θ) - L* ≥ ε) ≤ exp(-βε + S(ε))

where: - β = 1/T - S(ε) is entropy of states with loss gap ε

4.2 Time-Dependent Bound

P(L(θ(t)) - L* ≥ ε) ≤ exp(-ημtε/2T + ηtd/2)

5. Escape Time Bounds

5.1 First Passage Time

Mean time to escape local minimum:

τescape = (2π/ω₀)exp(ΔL/T)

where: - ω₀ = √(μL) - ΔL is barrier height

5.2 Probability of Being Trapped

P(trapped after time t) ≤ exp(-t/τescape)

6. Finite-Batch Effects

6.1 Batch Size Scaling

For batch size B:

T_eff = T₀/B
σ²_eff = σ²/B

6.2 Modified Bounds

𝔼[L(θ) - L*] ≤ σ√(T₀/2μB)

7. Practical Implications

7.1 Learning Rate Schedule

To maintain constant escape probability:

η(t) = η₀/√(1 + t/τrelax)

7.2 Batch Size Schedule

To maintain constant effective temperature:

B(t) = B₀(1 + t/τrelax)

7.3 Error vs Compute Trade-off

For compute budget C:

min error ∝ 1/√C

8. Multiple Local Minima

8.1 Basin Hopping Rate

Transition rate between basins:

k_{i→j} = (ω₀/2π)exp(-ΔL_{ij}/T)

8.2 Equilibration Time

Time to reach equilibrium distribution:

τeq = max(1/λ₂)

where λ₂ is second eigenvalue of transition matrix.

9. Synthesis: Overall Bounds

9.1 Combined Error Bound

𝔼[L(θ) - L*] ≤ min{
    (L₀ - L*)exp(-ημt),
    σ√(T/2μ)
} + ηTd/2μ

9.2 Probability of Finding Global Minimum

P(L(θ) - L* ≤ ε) ≥ 1 - exp(-βε + Sd)

where Sd is entropy of d-dimensional parameter space.