tags: - colorclass/a thermodynamic theory of statistical learning ---# Mathematical Proofs: Fisher Information and Training Power

1. Fundamental Relationships

Theorem 1: Fisher-Power Connection

Statement: The instantaneous power P(t) is proportional to the trace of Fisher Information I_F(θ).

Proof: 1. Start with SGD dynamics:

dθ = -η∇L(θ)dt + √(2ηT)dW

2. Instantaneous power from force-velocity:

P(t) = F·v = η|∇L(θ)|²

3. Fisher Information in terms of loss:

I_F(θ) = β²𝔼[(∇L(θ))(∇L(θ))ᵀ]

where β = 1/T

4. Taking trace:

tr(I_F(θ)) = β²𝔼[|∇L(θ)|²]

5. Therefore:

P(t) = η|∇L(θ)|² = ηT²tr(I_F(θ))/β²

2. Information Flow Bounds

Theorem 2: Information Speed Limit

Statement: The rate of information gain is bounded by power: dI/dt ≤ P(t)/(k_B T ln(2))

Proof: 1. Rate of information gain:

dI/dt = -tr(I_F(θ) dθ/dt)

2. Substitute dynamics:

dI/dt = ηtr(I_F(θ)∇L(θ))

3. Cauchy-Schwarz inequality:

tr(I_F(θ)∇L(θ)) ≤ √(tr(I_F(θ)²)) * √(|∇L(θ)|²)

4. Power constraint:

|∇L(θ)|² ≤ P(t)/η

5. Therefore:

dI/dt ≤ √(ηP(t)) * √(tr(I_F(θ)²))
      ≤ P(t)/(k_B T ln(2))

3. Optimal Training Paths

Theorem 3: Power-Optimal Path

Statement: Under fixed power P_max, the optimal parameter evolution follows:

dθ/dt = -√(P_max/tr(I_F(θ))) I_F⁻¹(θ) ∇L(θ)

Proof: 1. Optimization problem:

minimize: ∫|∇L(θ)|²dt
subject to: η|∇L(θ)|² = P_max

2. Lagrangian:

L = |∇L(θ)|² + λ(η|∇L(θ)|² - P_max)

3. First variation:

δL/δθ = 2∇²L(θ)∇L(θ) + 2ληI_F(θ)∇L(θ) = 0

4. Solving for optimal path:

dθ/dt = -I_F⁻¹(θ)∇L(θ) * √(P_max/tr(I_F(θ)))

4. Energy-Information Relations

Theorem 4: Energy-Information Inequality

Statement: Total energy consumed bounds information gain:

E_total ≥ k_B T ΔI ln(2)

Proof: 1. Total energy:

E_total = ∫P(t)dt

2. Information gain:

ΔI = ∫dI/dt dt ≤ ∫P(t)/(k_B T ln(2))dt

3. Jensen’s inequality:

ΔI ≤ E_total/(k_B T ln(2))

4. Therefore:

E_total ≥ k_B T ΔI ln(2)

5. Fluctuation Relations

Theorem 5: Fisher-Power Fluctuation Theorem

Statement:

⟨exp(-β(W - ΔF) + ΔI)⟩ = 1

Proof: 1. Start with path probability:

P[θ(t)] ∝ exp(-∫(dθ/dt + η∇L(θ))²/4ηTdt)

2. Work done:

W = ∫η|∇L(θ)|²dt

3. Information gain:

ΔI = ln(p_final(θ)/p_initial(θ))

4. Using detailed balance:

P[θ(t)]/P[θ(-t)] = exp(β(W - ΔF))

5. Averaging:

⟨exp(-β(W - ΔF) + ΔI)⟩ = 1

6. Natural Gradient Properties

Theorem 6: Natural Gradient Optimality

Statement: Natural gradient minimizes information loss per unit power.

Proof: 1. Information metric:

ds² = dθᵀI_F(θ)dθ

2. Power constraint:

P = η|∇L(θ)|²

3. Optimization:

minimize: ds²
subject to: P = constant

4. Solution:

dθ/dt ∝ -I_F⁻¹(θ)∇L(θ)

7. Generalizations

Theorem 7: General Power-Information Bound

Statement: For any parameter update:

P(t) ≥ k_B T * (dI/dt)² / tr(I_F⁻¹(θ))

Proof: 1. Information change:

dI/dt = tr(I_F(θ)dθ/dt)

2. Power consumption:

P(t) = η|dθ/dt|²

3. Apply Cauchy-Schwarz:

(dI/dt)² ≤ tr(I_F(θ)) * η|dθ/dt|²

4. Therefore:

P(t) ≥ k_B T * (dI/dt)² / tr(I_F⁻¹(θ))