tags: - colorclass/a thermodynamic theory of statistical learning ---# Fundamental Trade-offs in Neural Network Training

1. Speed vs. Efficiency Trade-off

1.1 Basic Relations

Power consumption scales with clock rate:

P ∝ ν₀² 

Energy per FLOP:

E_FLOP = k_B T ln(2) + α ν₀²

where: - k_B T ln(2) is Landauer limit - α ν₀² is dynamic power cost

1.2 Efficiency Metric

FLOPS per joule:

η = ν₀/E_FLOP = 1/(k_B T ln(2) + α ν₀²)

1.3 Optimal Points

Maximum efficiency (η_max) occurs at:

ν₀_efficient = √(k_B T ln(2)/α)

Maximum speed (ν₀_max) from thermal limits:

ν₀_max = √(T_max/α)

2. Batch Size vs. Hardware Trade-off

2.1 Total Compute Rate

R_compute = ν₀ * B * N_parallel

where N_parallel is hardware parallelism

2.2 Memory Bandwidth Limit

B_max = min(M_bandwidth/(ν₀ * d * bits_per_param), M_total/d)

2.3 Statistical Efficiency

Learning rate per step:

ΔL ∝ 1/√B

2.4 Optimal Batch Size

For fixed compute budget C:

B_opt = min(√(C * ν₀ * exp(ΔL/T)), B_max)

3. Time vs. Quality Trade-off

3.1 Training Time

Time to reach loss L*:

t_train = (L₀ - L*)/(d * ν₀ * B * exp(-ΔL/T) * ΔL_step)

3.2 Final Loss Bound

L* - L_min ≥ (T/2) * log(ν₀ * t_max)

3.3 Optimal Temperature

T_opt = ΔL/log(ν₀ * t_available)

4. Memory vs. Computation Trade-off

4.1 Memory Access Cost

Energy per parameter access:

E_mem = β * d_mem

where d_mem is memory distance

4.2 Computation vs. Memory Trade-off

Total energy per update:

E_total = N_compute * E_FLOP + N_mem * E_mem

4.3 Optimal Recompute Ratio

Recompute when:

N_compute * E_FLOP < E_mem

5. Parallelism vs. Communication Trade-off

5.1 Parallel Speedup

S(N) = N/(1 + γ * N * log(N))

where γ is communication overhead

5.2 Critical Batch Size

B_crit = 1/(γ * log(N_parallel))

5.3 Communication-Computation Ratio

CCR = (β * d_mem * N_comm)/(α * ν₀² * N_compute)

6. Combined Optimization

6.1 Total Cost Function

C_total = w_time * t_train + w_energy * E_total + w_quality * (L* - L_min)

6.2 Optimal Parameter Set

{ν₀*, B*, T*} = argmin(C_total)

subject to:

ν₀ ≤ ν₀_max
B ≤ B_max
t_train ≤ t_max

6.3 Practical Operating Points

1. Speed-Optimized:

ν₀ = ν₀_max
B = B_max
T = ΔL/log(ν₀_max * t_min)

2. Efficiency-Optimized:

ν₀ = ν₀_efficient
B = B_crit
T = ΔL/log(ν₀_efficient * t_available)

3. Quality-Optimized:

ν₀ = ν₀_efficient
B = B_opt
T = T_opt/2