tags: - colorclass/a thermodynamic theory of statistical learning ---# Relationship Between FLOP Rate and Training Dynamics

1. Fundamental Quantities

1.1 Basic Rates

- ν₀: FLOPs/token/parameter/s (fundamental attempt frequency) - d: number of parameters - l: sequence length - B: batch size

1.2 Derived Quantities

Total attempt rate per parameter:

ω = ν₀ * l * B   (attempts/parameter/s)

2. Transition Rates

2.1 Single Parameter Dynamics

Probability of successful update per attempt:

p_success = exp(-ΔL/T)

Effective transition rate per parameter:

k_param = ν₀ * l * B * exp(-ΔL/T)

2.2 System-wide Evolution

Total transition rate across all parameters:

k_total = d * ν₀ * l * B * exp(-ΔL/T)

3. Training Progress

3.1 Loss Evolution

Rate of loss decrease:

dL/dt = -k_total * ⟨ΔL⟩
      = -d * ν₀ * l * B * exp(-ΔL/T) * ⟨ΔL⟩

where ⟨ΔL⟩ is average improvement per successful update

3.2 Learning Time Scale

Characteristic learning time:

τ_learn = 1/(ν₀ * l * B * exp(-ΔL/T))

4. Scaling Relations

4.1 Compute-optimal Batch Size

For fixed compute budget C:

B_opt ∝ √(C * ν₀ * exp(ΔL/T))

4.2 Training Time

Time to reach loss threshold L*:

t_train = (L₀ - L*)/(d * ν₀ * l * B * exp(-ΔL/T) * ⟨ΔL⟩)

5. Hardware Utilization

5.1 Effective Rate

Actual progress rate with hardware efficiency η:

ν_eff = η * ν₀

5.2 Hardware Scaling

Required compute for fixed training time:

C ∝ 1/(η * ν₀)

6. Information Flow

6.1 Information Per Update

Bits extracted per successful update:

ΔI = ΔL/T    (nats)

6.2 Information Processing Rate

dI/dt = ν₀ * l * B * exp(-ΔL/T) * ΔI

7. Multi-scale Dynamics

7.1 Fast Processes

Parameter updates on time scale:

τ_fast = 1/ν₀

7.2 Slow Processes

Large-scale reorganization on time scale:

τ_slow = τ_fast * exp(ΔL/T)

8. Optimal Training Regime

8.1 Temperature Selection

Optimal temperature for given time budget t:

T_opt = ΔL/ln(ν₀ * l * B * t)

8.2 Batch Size Selection

Optimal batch size for fixed compute:

B_opt = min(√(C/(ν₀ * t)), C_max)

9. Practical Implications

9.1 Hardware Requirements

Minimum FLOP rate needed for training time t:

ν₀_min = ln(L₀/L*)/(d * l * B * t * exp(-ΔL/T))

9.2 Efficiency Bounds

Maximum achievable efficiency:

η_max = 1/(ν₀ * τ_memory)

where τ_memory is memory access time