tags: - colorclass/a thermodynamic theory of statistical learning ---# Maximum Power Training Limits
1. Fundamental Bounds
1.1 Landauer-Shannon Limit
Maximum information processing rate:
(dI/dt)_max = P_max/(k_B T ln(2))
1.2 Power-Loss Trade-off
P(t) = η|∇L(θ)|² + D tr(I_F(θ))
where: - First term: directed power for optimization - Second term: diffusive power from exploration
2. Maximum Power Theorem
2.1 Power Transfer Analysis
Theorem 1: Maximum power transfer occurs when:
η|∇L(θ)|² = D tr(I_F(θ))
Proof: 1. Total power:
P_total = P_useful - P_dissipated
2. Useful power scaling:
P_useful ∝ η|∇L(θ)|²
3. Dissipation scaling:
P_dissipated ∝ (η|∇L(θ)|²)²/D tr(I_F(θ))
4. Maximum at equal terms.
2.2 Optimal Learning Rate
η_opt = D tr(I_F(θ))/|∇L(θ)|²
3. Speed Limits
3.1 Thermodynamic Speed Limit
Theorem 2: Minimum time to reduce loss by ΔL:
t_min = √(2ΔL * tr(I_F(θ))/P_max)
Proof: 1. Cramér-Rao bound:
var(Δθ) ≥ tr(I_F⁻¹(θ))
2. Power constraint:
|dθ/dt|² ≤ P_max/tr(I_F(θ))
3. Combine for minimum time.
3.2 Maximum Learning Rate
η_max = P_max/(|∇L(θ)|² * tr(I_F(θ)))
4. Batch Size Limits
4.1 Critical Batch Size
Theorem 3: Maximum useful batch size:
B_crit = P_max/(ν₀ * tr(I_F(θ)))
Proof: 1. Power per sample:
P_sample = ν₀ * tr(I_F(θ))
2. Total power constraint:
B * P_sample ≤ P_max
4.2 Optimal Batch Scaling
B_opt(t) = min(
B_crit,
√(P_max * t/E_sample)
)
5. Temperature Dynamics
5.1 Maximum Power Temperature
Theorem 4: Optimal temperature for power:
T_opt = ΔL/log(P_max/(ν₀ * tr(I_F(θ))))
5.2 Temperature Schedule
T(t) = T_opt * √(tr(I_F(θ₀))/tr(I_F(θ(t))))
6. Combined Strategy
6.1 Maximum Power Protocol
def max_power_update(model, P_max):
# Estimate Fisher Information
I_F = estimate_fisher(model)
# Compute gradients
grad = compute_gradients(model)
# Set optimal parameters
η = min(
η_max,
D * tr(I_F)/|grad|²
)
B = min(
B_crit,
√(P_max/(ν₀ * tr(I_F)))
)
T = ΔL/log(P_max/(ν₀ * tr(I_F)))
return η, B, T
6.2 Efficiency Bound
Maximum efficiency:
η_max = (1 - T_c/T_h) * (1 - log(T_h/T_c))
7. Fluctuation Constraints
7.1 Power Fluctuations
var(P) ≤ (P_max)²/4
7.2 Stability Condition
T ≥ √(P_max * dt/k_B)
8. Practical Implementation
8.1 Hardware Limits
- Memory bandwidth: B_max - Compute capacity: ν₀_max - Power budget: P_max
8.2 Software Limits
- Gradient noise scale - Fisher trace estimation - Temperature control
8.3 Combined Limits
Effective power limit:
P_eff = min(
P_max,
B_max * ν₀_max * tr(I_F),
Memory_bandwidth * E_access
)