tags: - colorclass/a thermodynamic theory of statistical learning ---# Optimal Training Through the Lens of Non-equilibrium Thermodynamics

1. Initial Setup

Let’s define our key quantities: - η(t): Time-dependent learning rate (mobility) - T(t): Effective temperature (from batch noise) - β(t) = 1/T(t): Inverse temperature - L(θ): Loss landscape - p(θ,t): Parameter distribution - s(θ,t) = -ln p(θ,t): Local entropy - j(θ,t): Probability current in parameter space

2. Dynamic Equations

The Fokker-Planck equation for parameter evolution:

∂ₜp(θ,t) = ∇·[η(t)p(θ,t)∇L(θ)] + D(t)∇²p(θ,t)

Where D(t) relates to temperature as:

D(t) = η(t)/β(t)

3. Quenching vs Annealing Analysis

3.1 Quenching Regime

In rapid quenching (aggressive early training):

η(t)|∇L(θ)| >> √(2D(t))

This leads to approximate dynamics:

∂ₜp(θ,t) ≈ ∇·[η(t)p(θ,t)∇L(θ)]

The entropy production rate becomes:

s˙tot(t) ≈ η(t)β(t)∫ p(θ,t)|∇L(θ)|² dθ

3.2 Annealing Regime

In proper annealing, we maintain:

η(t)|∇L(θ)| ∼ O(√(2D(t)))

The full entropy production has both terms:

s˙tot(t) = η(t)β(t)∫ p(θ,t)|∇L(θ)|² dθ - D(t)∫ |∇ln p(θ,t)|² p(θ,t) dθ

4. Optimal Cooling Conditions

4.1 Adiabatic Condition

For quasi-static optimization, need:

|∂ₜln p(θ,t)| << |∇L(θ)·∇ln p(θ,t)|

This ensures the distribution can relax locally before major changes.

4.2 Minimal Work Principle

The optimal schedule minimizes:

W = ∫₀ᵗ dt η(t)∫ p(θ,t)|∇L(θ)|² dθ

subject to maintaining sufficient exploration:

D(t) ≥ D_min(t) = c|∇²L(θ)|⁻¹

where c is a constant and |∇²L(θ)| is a measure of local curvature.

5. Optimal Schedule Derivation

5.1 Schedule Constraints

1. Initial condition: High temperature for exploration

T(0) = T₀ >> max(|∇²L(θ)|)

2. Final condition: Low temperature for exploitation

T(t_final) = T_f ∼ O(min(|∇²L(θ)|))

5.2 Optimal Form

The optimal schedule follows:

T(t) = T₀ exp(-t/τ)

where τ is the characteristic cooling time:

τ = t_final / ln(T₀/T_f)

5.3 Learning Rate Schedule

This implies a learning rate schedule:

η(t) = η₀ exp(-t/2τ)

To maintain the proper balance between drift and diffusion.

6. Practical Implementation

6.1 Estimating Parameters

1. Initial temperature T₀:

T₀ ≈ var(∇L(θ))/mean(|∇L(θ)|)

2. Final temperature T_f:

T_f ≈ min(eigenvalues(∇²L(θ)))

3. Cooling time τ:

τ ≈ d/min(eigenvalues(∇²L(θ)))

where d is the parameter dimension.

6.2 Schedule Adaptation

The schedule should be adjusted when:

|∂ₜs(θ,t)| > ε|s˙tot(t)|

This indicates too-rapid cooling causing trapped states.

7. Convergence Guarantees

Under this schedule: 1. The system maintains detailed balance approximately 2. Entropy production rate decreases monotonically 3. Final state approaches true minimum with probability:

P(|L(θ) - L_min| < ε) ≥ 1 - exp(-βε)

This provides exponentially better guarantees than quenching approaches.