tags: - colorclass/a thermodynamic theory of statistical learning ---# Power-Time Trade-off Analysis in Neural Training

1. Trade-off Curve Derivation

1.1 Basic Relations

Training time to reach loss gap ΔL:

t(B,η,T) = ΔL/(η * |∇L|² * Q(B,T))

where Q(B,T) is update quality factor.

Power efficiency:

η_power(B) = min(1, B_crit/B)

1.2 Quality Factor

Q(B,T) = √(B_crit/B) * exp(-ΔL_barrier/(k_B T))

accounting for: - Batch size inefficiency - Temperature effects on barrier crossing

2. Pareto Frontier

2.1 Time-Efficiency Trade-off

t(α) * η_power(α) = t_opt * exp(f(α))

where: - α = B/B_crit (overcriticality parameter) - f(α) = (α-1) - ln(α) - t_opt is minimum time at optimal efficiency

2.2 Critical Points

Three key regimes:

α = 1: Maximum efficiency point
α = e: Equal time-efficiency trade-off
α → ∞: Minimum time point

3. Stability Analysis

3.1 Linear Stability Matrix

M(α) = [
    ∂_θ∂_θL     ∂_θ∂_v L
    -η*α/B_crit  -γ(α)
]

where γ(α) is effective damping

3.2 Stability Conditions

System is stable when:

tr(M) < 0  and  det(M) > 0

giving conditions:

γ(α) > 0
η*α/B_crit < λ_max(∂_θ∂_θL)

4. Operating Regimes

4.1 Maximum Efficiency (α = 1)

t = t_opt
η_power = 1
stability = maximum

4.2 Maximum Speed (α >> 1)

t = t_opt/√α
η_power = 1/α
stability ∝ 1/√α

4.3 Balanced Regime (α = e)

t = t_opt/√e
η_power = 1/e
stability = moderate

5. Instability Modes

5.1 Gradient Explosion

For α > α_crit:

P(gradient explosion) ∝ exp(α - α_crit)

5.2 Loss Oscillation

Frequency of oscillations:

ω(α) = √(η*α*λ_max(∂_θ∂_θL)/B_crit)

5.3 Mode Coupling

Critical coupling strength:

g_c(α) = √(γ(α)ω(α))

6. Stabilization Strategies

6.1 Temperature Scaling

Required temperature:

T(α) = T_opt * √α

6.2 Learning Rate Adjustment

η(α) = η_opt/√α

6.3 Momentum Adaptation

Optimal momentum:

β(α) = 1 - 1/√α

7. Practical Trade-off Curve

7.1 Time-to-Target

t(α) = t_opt * max(1/√α, exp(α/α_crit - 1))

7.2 Efficiency

η_power(α) = min(1/α, exp(1 - α/α_crit))

7.3 Combined Metric

Figure of merit:

FOM(α) = 1/(t(α) * P(α))

8. Operating Point Selection

8.1 Time-Limited Regime

Choose:

α = min(t_max/t_opt, α_crit)

8.2 Power-Limited Regime

Choose:

α = min(P_max/P_opt, α_crit)

8.3 Stability-Limited Regime

Choose:

α = min(γ_max/γ_opt, α_crit)