tags: - colorclass/a thermodynamic theory of statistical learning ---# Stability-Limited Training Speed

1. Characteristic Time Scales

1.1 Power Time Scale

From raw power limit:

τ_power = ΔI/(P_max/(k_B T ln(2)))

1.2 Stability Time Scale

From parameter dynamics:

τ_stability = √(λ_max(I_F(θ))/η_max)

where: - λ_max(I_F): largest eigenvalue of Fisher Information - η_max: maximum stable learning rate

2. Instability Mechanisms

2.1 Fast Mode Instability

For update frequency ω:

ω > √(2/λ_max(I_F(θ))) ⟹ instability

2.2 Mode Coupling

Coupling strength:

g = ⟨∂²L/∂θᵢ∂θⱼ⟩

Instability when:

g > g_c = 1/τ_stability

3. Power vs Stability Limits

3.1 Power-Limited Updates

Maximum power-limited update size:

|Δθ|_power = √(P_max * dt/tr(I_F))

3.2 Stability-Limited Updates

Maximum stable update size:

|Δθ|_stable = 1/√λ_max(I_F)

3.3 Critical Comparison

Key Point: Always find

|Δθ|_stable < |Δθ|_power

at sufficiently high power

4. Why Stability Dominates

4.1 Information Geometry

1. Parameter space curvature sets minimum update time 2. No amount of power can violate causality in information propagation 3. Updates must respect local geometric structure

4.2 Lyapunov Analysis

For perturbation δθ:

d|δθ|²/dt ≤ (2η_max λ_max(I_F) - 2/τ_stability)|δθ|²

Stability requires:

η_max < 1/(τ_stability * λ_max(I_F))

5. Practical Implications

5.1 Maximum Learning Rate

η_max = min(
    P_max/(|∇L|² * tr(I_F)),  # Power limit
    1/(τ_stability * λ_max(I_F))  # Stability limit
)

5.2 Batch Size Limit

B_max = min(
    B_crit,  # Power limit
    1/(η_max * λ_max(I_F))  # Stability limit
)

6. Testing for Limits

6.1 Power-Limited Regime

|Δθ| ∝ √P_max

6.2 Stability-Limited Regime

|Δθ| = constant

regardless of power increase

6.3 Diagnostic

If increasing power doesn’t speed up training:

Stability_limited = (∂t_train/∂P_max ≈ 0)