tags: - colorclass/a thermodynamic theory of statistical learning ---# Analysis of Training Beyond Critical Batch Size

1. Critical Point Analysis

1.1 Critical Point Definition

B_crit = P_max/(ν₀ * tr(I_F(θ)))

represents point where: - Power budget saturates - Information processing capacity maximizes - Gradient noise reaches optimal level

1.2 Physical Analogy

Like phase transitions: - B < B_crit: “liquid” phase (efficient mixing) - B = B_crit: “critical point” (optimal fluctuations) - B > B_crit: “gas” phase (inefficient mixing)

2. Supercritical Regime (B > B_crit)

2.1 Power Utilization

For B > B_crit:

P_effective = P_max * (B_crit/B)

Implications: - Power per sample decreases - Computational efficiency drops - Diminishing returns on parallelism

2.2 Information Processing

Information rate becomes sublinear:

dI/dt = (P_max/T) * √(B_crit/B)

Due to: - Redundant gradient computations - Reduced exploration effectiveness - Correlated sample statistics

3. Pathological Behaviors

3.1 Gradient Collapse

When B >> B_crit:

var(∇L_B) ∝ 1/B
std(∇L_B) ∝ 1/√B

Leading to: - Over-deterministic updates - Poor exploration - Premature convergence

3.2 Temperature Effects

Effective temperature drops:

T_eff = T * √(B_crit/B)

Resulting in: - Reduced barrier crossing - Trapped states - Loss plateaus

4. Energy Inefficiencies

4.1 Energy Waste

For B > B_crit:

E_waste = E_sample * (B - B_crit)

where E_sample is energy per sample

4.2 Efficiency Scaling

η(B) = η_max * (B_crit/B)

showing linear efficiency drop

5. Compensatory Mechanisms

5.1 Learning Rate Scaling

Required learning rate adjustment:

η(B) = η_opt * √(B_crit/B)

to maintain update magnitude

5.2 Temperature Compensation

Required temperature increase:

T(B) = T_opt * √(B/B_crit)

to maintain exploration

6. Optimization Dynamics

6.1 Update Quality

Quality factor Q:

Q(B) = min(1, √(B_crit/B))

measuring update effectiveness

6.2 Convergence Time

Time to convergence:

t_conv(B) = t_opt * max(1, B/B_crit)

7. Practical Implications

7.1 Resource Waste

For B > B_crit: - Compute waste: (B - B_crit)/B - Memory waste: (B - B_crit)/B - Time waste: 1 - Q(B)

7.2 Performance Impact

Loss degradation:

ΔL_excess ≈ k_B T * log(B/B_crit)

when B >> B_crit

7.3 Mitigation Strategies

1. Gradient accumulation 2. Layer-wise batch sizing 3. Dynamic batch adjustment

8. Detection Methods

8.1 Efficiency Metrics

Monitor:

η_actual/η_theoretical = min(1, B_crit/B)

8.2 Power Utilization

Track:

P_used/P_max = min(1, B_crit/B)

8.3 Information Rate

Measure:

(dI/dt)/(dI/dt)_max = √(B_crit/B)

9. Recommendations

9.1 Batch Size Selection

def optimal_batch(model, P_max, tolerance=0.9):
    I_F = estimate_fisher(model)
    B_crit = P_max/(ν₀ * tr(I_F))
    return min(
        B_crit/tolerance,
        available_memory/sizeof(sample)
    )

9.2 Monitoring

def check_efficiency(B_actual, B_crit):
    efficiency = min(1, B_crit/B_actual)
    if efficiency < 0.8:
        warn(f"Operating at {efficiency:.2%} efficiency")