tags: - colorclass/a thermodynamic theory of statistical learning ---# Natural Gradients in Statistical Thermodynamics of Learning

1. Fundamental Setup

1.1 Statistical Manifold

Parameter space forms a Riemannian manifold where:

p(x|θ): probability of data x given parameters θ
I_F(θ) = 𝔼[∇logp(x|θ)∇logp(x|θ)ᵀ]: Fisher metric
ds² = dθᵀI_F(θ)dθ: infinitesimal distance

1.2 Thermodynamic Quantities

L(θ) = -𝔼[logp(x|θ)]: loss (negative log-likelihood)
S(θ) = -∫p(x|θ)logp(x|θ)dx: entropy
F(θ) = L(θ) - TS(θ): free energy

2. Natural Gradient Derivation

2.1 From KL Divergence

Theorem 1: Natural gradient minimizes KL divergence per unit parameter change.

Proof: 1. Local KL divergence:

KL(p(x|θ)||p(x|θ+dθ)) = (1/2)dθᵀI_F(θ)dθ + O(||dθ||³)

2. Optimization problem:

minimize: KL(p(x|θ)||p(x|θ+dθ))
subject to: ||dθ|| = ε

3. Lagrangian:

L = (1/2)dθᵀI_F(θ)dθ + λ(||dθ||² - ε²)

4. Solution:

dθ ∝ -I_F⁻¹(θ)∇L(θ)

2.2 From Energy Conservation

Theorem 2: Natural gradient preserves energy under parameter transformations.

Proof: 1. Energy in parameter space:

E(θ) = (1/2)θ̇ᵀI_F(θ)θ̇

2. Under reparametrization θ → η:

I_F(η) = (∂θ/∂η)ᵀI_F(θ)(∂θ/∂η)

3. Energy conservation:

θ̇ᵀI_F(θ)θ̇ = η̇ᵀI_F(η)η̇

4. Implies update:

θ̇ = -I_F⁻¹(θ)∇L(θ)

3. Thermodynamic Interpretation

3.1 Power Analysis

Theorem 3: Natural gradient minimizes power dissipation.

Proof: 1. Instantaneous power:

P(t) = F·v = ∇L(θ)ᵀθ̇

2. With Fisher metric:

P(t) = (I_F(θ)θ̇)ᵀI_F⁻¹(θ)∇L(θ)

3. Minimize subject to fixed speed:

minimize: P(t)
subject to: θ̇ᵀI_F(θ)θ̇ = constant

4. Solution:

θ̇ = -ηI_F⁻¹(θ)∇L(θ)

3.2 Information Speed

Theorem 4: Natural gradient maximizes information gain per unit time.

Proof: 1. Information change:

dI/dt = -tr(I_F(θ)θ̇)

2. Under power constraint P(t):

maximize: dI/dt
subject to: θ̇ᵀI_F(θ)θ̇ = 2P(t)/η

3. Solution:

θ̇ = -√(P(t)/(ηtr(I_F(θ))))I_F⁻¹(θ)∇L(θ)

4. Connection to Statistical Physics

4.1 Free Energy Flow

Theorem 5: Natural gradient follows steepest free energy descent.

Proof: 1. Free energy change:

dF/dt = ∇F(θ)ᵀθ̇ - T∇S(θ)ᵀθ̇

2. With Fisher metric:

dF/dt = -θ̇ᵀI_F(θ)θ̇

3. Maximum descent:

θ̇ = -I_F⁻¹(θ)∇F(θ)

4.2 Fluctuation-Dissipation

Theorem 6: Natural gradient satisfies fluctuation-dissipation theorem.

Proof: 1. Langevin dynamics:

dθ = -ηI_F⁻¹(θ)∇L(θ)dt + √(2ηT)I_F⁻¹/²(θ)dW

2. Equilibrium fluctuations:

⟨δθδθᵀ⟩ = TI_F⁻¹(θ)

3. Response function:

R(t) = -η⟨θ(t)∇L(θ(0))ᵀ⟩ = ηI_F⁻¹(θ)δ(t)

5. Practical Implications

5.1 Optimal Learning Rate

η_opt = min(
    1/λmax(I_F(θ)),
    P_max/(tr(I_F(θ)))
)

5.2 Temperature Schedule

T(t) = T₀√(tr(I_F(θ₀))/tr(I_F(θ(t))))

5.3 Energy-Efficient Updates

θ(t+dt) = θ(t) - η_opt * I_F⁻¹(θ)∇L(θ) * √(P(t)/P_max)

6. Convergence Analysis

6.1 Local Convergence Rate

Theorem 7: Natural gradient achieves optimal local convergence.

Proof: 1. Local quadratic approximation:

L(θ + dθ) ≈ L(θ) + ∇L(θ)ᵀdθ + (1/2)dθᵀH(θ)dθ

2. With natural gradient:

dθ = -ηI_F⁻¹(θ)∇L(θ)

3. Convergence rate:

||θ(t) - θ*|| ≤ ||θ₀ - θ*||exp(-ηλmin(I_F⁻¹(θ)H(θ))t)