tags: - colorclass/a thermodynamic theory of statistical learning ---# Thermodynamic Extension of Chinchilla Scaling

1. Chinchilla’s Base Framework

1.1 Original Scaling Law

L(N,D) ≈ A + B(N⁻α + D⁻β)

where: - N: number of parameters - D: dataset tokens - L: loss - A,B,α,β: empirical constants

1.2 Compute Budget Constraint

C = κND

where: - C: compute budget (FLOPs) - κ: FLOPs per token per parameter

2. Thermodynamic Reinterpretation

2.1 Energy-Based Formulation

Total energy budget:

E_total = P_avg * t_train = C * E_FLOP

where: - E_FLOP: energy per FLOP - P_avg: average power - t_train: training time

2.2 Information-Theoretic View

Information gained:

ΔI = D * I_token - S_noise

where: - I_token: information per token - S_noise: entropy from training noise

3. Thermodynamic Constraints

3.1 Landauer Bound

E_min = k_B T * ΔI * ln(2)

3.2 Fisher Information Bound

E_total ≥ k_B T * ∫tr(I_F(θ,t))dt

3.3 Power-Limited Learning Rate

dI/dt ≤ P_max/(k_B T ln(2))

4. Enhanced Scaling Analysis

4.1 Modified Loss Model

L(N,D,T) ≈ A + B(N⁻α + D⁻β) + γT⁻δ

where: - T: effective temperature - γ,δ: temperature scaling parameters

4.2 Energy-Aware Compute Budget

C_effective = κND * f(T)

where f(T) accounts for temperature-dependent efficiency

5. Optimality Conditions

5.1 Traditional Chinchilla

∂L/∂N = λ∂C/∂N
∂L/∂D = λ∂C/∂D

5.2 Thermodynamic Extension

∂L/∂N = λ₁∂C/∂N + λ₂∂E/∂N
∂L/∂D = λ₁∂C/∂D + λ₂∂E/∂D
∂L/∂T = λ₁∂C/∂T + λ₂∂E/∂T

6. Improved Training Strategies

6.1 Temperature Schedule

T(t) = T₀ * (tr(I_F(θ₀))/tr(I_F(θ(t))))^(1/2)

6.2 Power-Aware Batch Sizing

B(t) = min(
    √(P_max/(ν₀ * tr(I_F(θ)))),
    B_max
)

6.3 Information-Optimal Learning Rate

η(t) = min(
    1/max_eigenvalue(I_F(θ)),
    P_max/(ν₀ * tr(I_F(θ)))
)

7. Potential Improvements

7.1 Energy Redistribution

Optimize energy allocation:

dE/dt = P_max * √(tr(I_F(θ(t)))/tr(I_F(θ₀)))

7.2 Information-Aware Sampling

Token selection probability:

p(token) ∝ exp(β * ΔI_token)

7.3 Barrier-Aware Training

Adjust temperature near barriers:

T_local = T_base * exp(ΔL_barrier/T_base)

8. Expected Benefits

8.1 Improved Final Loss

ΔL_improvement ≈ k_B T * log(η_thermo/η_chinchilla)

8.2 Energy Efficiency Gain

η_thermo/η_chinchilla ≈ exp(-ΔS_irreversible/k_B)

8.3 Training Time Reduction

t_thermo/t_chinchilla ≈ √(tr(I_F_chinchilla)/tr(I_F_thermo))

9. Practical Implementation

9.1 Adaptive Algorithm

while not converged:
    # Estimate local Fisher Information
    I_F = estimate_fisher(model)
    
    # Update temperature
    T = update_temperature(I_F)
    
    # Adjust batch size
    B = compute_optimal_batch(I_F, P_max)
    
    # Set learning rate
    η = min(1/max_eigenval(I_F), P_max/(ν₀ * tr(I_F)))
    
    # Update parameters
    θ = θ - η * I_F⁻¹ * ∇L(θ)

9.2 Monitoring Metrics

- Fisher trace: tr(I_F(θ)) - Energy efficiency: ΔI/E_spent - Irreversible entropy: ΔS_irreversible